

Moreelsepark 48
3511 EP Utrecht
The Netherlands

PO Box 19035
3501 DA Utrecht
The Netherlands

+31 (0) 88 – 787 30 00
admin@surfnet.nl
www.surfnet.nl

ING Bank NL54INGB0005936709 C of C Utrecht 30090777 VAT NL 0089.60.173.B01

Federated login to native applications

The right way

Author: S. Veeke

Version: 1.0

Date: 22-04-2016

mailto:admin@surfnet.nl

Federated login to native applications using a web browser

2

Table of Contents

1 Terminology ... 3

2 Introduction .. 4

3 Project .. 5

3.1 Problem definition ... 5

3.2 Scope .. 5

3.3 Example use cases ... 5

3.4 Criteria .. 5

4 Proof of concept setup.. 7

4.1 Server ... 7

4.2 Clients ... 7

5 Results ... 8

5.1 Generic methods ... 8

5.2 Specific methods ... 9

5.3 Intercepting tokens ...11

5.4 Overview methods..13

6 Conclusion ..14

Summary ..14

Conclusion ..15

This publication is licensed under a Creative Commons Attribution 3.0 Unported licence

More information on the licence can be found on http://creativecommons.org/licenses/by/3.0/

Federated login to native applications using a web browser

3

1 Terminology

NREN

National Research and Education Network.

Native application

An application program that has been developed for a specific platform or device. Other used

terms are nonweb applications and rich clients.

SURFconext

SURFconext offers SAML-based single sign-on-access to a large number of online services.

More than 120 Dutch organisations in the area of higher education and research are using

SURFconext to securely log in to connected cloud services. In this proof of concept

SURFconext was used to authenticate users.

SAML

Security Assertion Markup Language is an open-standard data format for exchanging

authentication and authorisation data between Identity Providers and Service Providers.

OAuth

OAuth is an open standard for authorisation. The demo Service Provider uses OAuth 2.0.

URL-scheme

Custom URL schemes allow users to open applications from within other applications. For

example, an e-mail application could be opened from a web browser using

applicationname://token-info.

Federated login to native applications using a web browser

4

2 Introduction

SURFnet and many others NREN’s are using web based protocols such as SAML 2.0 for

their authentication and authorisation platforms. Although this makes for a great and secure

user experience on the web, it is difficult to apply this method to native non-web applications.

These native applications are typically designed for an operating system and often do not

support federated login.

Because there is no generic cross-operating system solution available, some developers

implement various workarounds such as embedded browsers and application specific

passwords. These methods are undesirable from a security standpoint. With most

workarounds the user is unable to verify the server address and the SSL-certificate. In

addition, application specific passwords are a hindrance to users and provide an additional

access mechanism which can be exploited. The user’s credentials should never leave the

Identity Provider so third parties won’t be able to intercept these.

With increasing demand for SURFconext to support federated login within native applications

and the lack of an obvious and secure solution, SURFnet1 and Egeniq2 have examined

federated login using the system browser. The results are described in this report.

1 https://www.surf.nl
2 https://www.egeniq.nl

https://www.surf.nl/
https://www.egeniq.nl/

Federated login to native applications using a web browser

5

3 Project

3.1 Problem definition
SAML heavily depends on common browser capabilities (such as HTTP-redirects), which

works very well in a web browser. Native applications can communicate with web resources,

but to fully support SAML and for example all the different login pages and technologies used

by Identity Providers, an application developer must actually recreate a web browser inside

the native application. This is undesirable, as building web browsers is often not the core

business of most application developers. Therefore, several methods exist for developers to

integrate federated login using SAML into native applications. This report identifies and

compares the available methods (the results are described in chapter 5).

All methods use OAuth to facilitate authorization between a web browser component (used

for authentication) and the application server.

3.2 Scope
This project consists of two objectives:

1. Finding the best method to do federated login in native applications using the

(system) web browser. Demo applications will be built as a proof of concept.

2. Developing an SDK with documentation for every best method on all investigated

operating systems. These SDK’s will be reference implementations from SURFnet.

This report is the final product of the first project objective. The second objective will be

completed in November 2015.

The scope of this project offers no solution to broader non-web challenges such as web

authentication for SSH-access or native e-mail clients3.

3.3 Example use cases
Below are some possible use cases for the OAuth-scenario.

 SURFnet’s own SURFdrive uses an embedded browser for authenticating through

SURFconext. This is an undesirable situation since users cannot see the location

they’re connecting to and cannot verify the SSL-certificate.

 Some application developers that want to connect their application to SURFconext

struggle with the federated login scenario. SURFnet can help them a lot by providing

them with a guide with best practices and ready to use SDK’s.

 Some application developers use methods for federated login that are undesirable

from a security standpoint. It helps if SURFnet has the aforementioned guide, SDK’s

and documentation to convince the application developers to change their

applications with a more robust and secure solution.

3.4 Criteria
Methods for web-based authentication will be held against the following requirements (both

from the user’s and method’s perspective):

 The user can see the web address the client is connecting to.

 The user is able to validate the SSL-certificate on the server.

 The user’s credentials cannot be hijacked by the application.

3 Such as Microsoft Outlook and Mozilla Thunderbird.

Federated login to native applications using a web browser

6

 The user’s credentials remain at the Identity Provider.

 The user can choose his or her favourite browser to use.

 The method must be user friendly.

 The method works with all common4 browsers.

 The method works on a widely used version of the platform.

 The method is supported by the operating system and company behind it.

 The method doesn’t store user data (credentials, personal data etc.)

4 Common browsers are Mozilla Firefox, Google Chrome/Chromium, Microsoft Internet Explorer/Edge
and Apple Safari.

Federated login to native applications using a web browser

7

4 Proof of concept setup

4.1 Server
The proof of concept demo applications consists of platform specific demonstrator

applications in combination with an authentication server. The server component uses a

CentOS 7 webserver with OAuth 2.0 and a SAML 2.0 Service Provider. This setup was

connected to SURFconext. The Identity Provider part was provided by the SURFconext DIY

IdP. All used software:

 CentOS Linux 7

 Apache2 (httpd)

 mod_auth_mellon (https://github.com/UNINETT/mod_auth_mellon)

 php-oauth-as (https://github.com/fkooman/php-oauth-as)

4.2 Clients
For the clients a selection of commonly used, future proof and popular versions of desktop

and mobile operating systems has been made. This means the following platforms have

been examined:

 Microsoft Windows 8(.1) and 10

 Microsoft Windows Phone

 Windows RT

 Apple OS X 10

 Apple iOS 8 and 9

 Android

Windows 8(.1), 10, RT and Phone
Windows Desktop 8, 8.1, 10, Windows RT and Windows Phone are quite similar from a

developer’s viewpoint so it is relatively easy to investigate all of them. Moreover, a lot of

people will be using Windows 8 and 10 in the near future so those platforms are most

interesting.

Apple OS X 10
Apple OS X 10 is the most widely used Apple desktop operating system. The current version

is 10.11 (El Capitan) but it is likely many people still use 10.10 or 10.9.

Apple iOS 8 and 9
When this project started, Apple iOS 9 was not released yet. However, Apple already

announced a new method for authentication through the web browser in iOS 9. This method

is not backwards compatible so that is why iOS 8 and iOS 9 are both included.

Android
Android is by far the most used smartphone operating system. Since there are a lot of

different versions of Android around, the platform has been generally investigated.

The code and documentation of the SDK’s are published on GitHub.

 https://github.com/SURFnet/nonweb-sso-android

 https://github.com/SURFnet/nonweb-sso-ios

 https://github.com/SURFnet/nonweb-sso-osx

 https://github.com/SURFnet/nonweb-sso-windows

https://github.com/UNINETT/mod_auth_mellon
https://github.com/fkooman/php-oauth-as
https://github.com/SURFnet/nonweb-sso-android
https://github.com/SURFnet/nonweb-sso-ios
https://github.com/SURFnet/nonweb-sso-osx
https://github.com/SURFnet/nonweb-sso-windows

Federated login to native applications using a web browser

8

5 Results

This chapter describes the results of the investigation into all available methods for

integrating federated login with native applications. The first paragraph consists of ‘generic

methods’, which are available on all investigated operating systems. The second part

consists of ‘specific methods’; methods that are only available for a specific operating

system.

5.1 Generic methods
There are two methods which can be used in all of the investigated operating systems,

referred to as ‘Webview’ and ‘Browser redirect’.

5.1.1 Webview
Webview (also known as ‘Embedded browser’) is an element in the operating system that

acts like a mini-browser within the application it is used by. Every operating system has its

own name for it (Apple: WebView, Android: WebView, Microsoft: x-ms-webview).

When the native application wants to authenticate, a browser window will appear inside a

predefined area of the native application. This window is a stripped down version of the web

browser that is included by default in the operating system. No address bar is shown so the

user is not able to verify the website he is visiting (e.g. if the correct address is used and if

the certificate is valid). In terms of user friendliness, this is a relatively good method: the user

does not leave the application and the flow is very simple and natural. For some operating

systems, user interaction is required due to dialogs like ‘Did you mean to switch

applications?’.

In our setup the flow is as follows (example screenshot is from Windows 8.1):

1. The user wants to login, the Webview opens within the application.

2. The SURFconext discovery page is shown and the user selects his Identity Provider.

3. The user enters his or her credentials and logs in at his Identity Provider.

4. Some operating systems (mostly Desktop) will ask the user whether the native

application should be opened. For example, Windows will ask the user if he or she

meant to switch applications (see figure 1).

5. After pressing ‘yes’ the user is brought back to the application (with an OAuth-token).

Figure 1 - Did you mean to switch applications?

5.1.2 Browser redirect
Another well-known and commonly used method is to allow the user to use the default

system browser for the login process. The user authenticates using the browser and the

browser then redirects the user back with an OAuth-token to the application using a call-back

URL-scheme. An example of this would be: ‘applicationname://token-details’.

When the application wants to authenticate, it will open the default web browser. Because it

is a full browser, the address bar will be shown such that the user can verify whether the

website is authentic. In terms of user friendliness, the major disadvantage is that the user

must switch applications and a dialog like the one shown in figure 2 could be shown. On

Windows, this dialog is system-triggered and cannot be overridden. This might trigger the

user to click ‘do nothing’ and thus he will not return to the native application, which will not

Federated login to native applications using a web browser

9

receive the token. On other platforms the dialog is not system-triggered but can be triggered

by the browser itself (for instance Chrome will always show a dialog). Another advantage of

this method is that most web browsers offer ways to save the user’s credentials. Finally,the

browser is able to access the user’s credentials in case certificates are used for

authentication,

In our setup the flow is as follows (example screenshot is from Windows in combination with

Google Chrome):

1. The user wants to login, the application

automatically opens the default system

browser.

2. The SURFconext discovery page is shown

and the user selects his Identity Provider.

3. The user enters his credentials at his

Identity Provider (or uses the browser’s

autofill password feature) and logs in.

4. The browser asks the user if another

application should be opened (figure 2).

5. After pressing ‘Start application’ the user

is brought back to the application (with an

OAuth-token).

5.2 Specific methods

5.2.1 Microsoft Windows – WebAuthenticationBroker
The Microsoft WebAuthenticationBroker is a class specifically designed to handle the OAuth-

scenario. When supplied with the URL and corresponding method, the system will open a

dialog which is the same dialog Windows uses to log into its own services like Microsoft

Outlook and Xbox Live. Once the user has finished logging on (or has cancelled the

procedure), a callback URL is called which is unique for the application. This means that,

unlike with Webview and Browser Redirection, the token cannot be intercepted.

Because the opened

dialog is a system

dialog, the application

becomes modal and

gets put in a

‘suspended’ state. An

application developer

has no control over de

contents and is not able

to read or manipulate

the data entered by the user. Also, the developer has no control whatsoever about the look

and feel of the user interface of the dialog. This means that it is not possible to show an

address bar or control dialogs like the ‘Would you like to save this password?’-dialog. The

passwords are stored in the ‘Credential Manager’ under ‘Web Credentials’ and will be synced

with the Microsoft Cloud so they can be synced across devices which use the same

Microsoft account.

Figure 3 - Remember sign-in info?

Figure 2 – Open external application?

Federated login to native applications using a web browser

10

5.2.2 Apple iOS – Safari View Controller
When using OAuth-authorization on iOS, Apple does not give developers much choice for

handling it. In the past there had been two ways to handle it: launching the built-in Safari web

browser (browser redirect) or using a WebView component within the application itself.

Somewhere in June 2015 Apple started rejecting applications5678 which used the browser

redirection method, because Apple finds the user experience insufficient. Around the same

time Apple introduced the Safari View Controller for iOS 9. This caused problems for

developers who were reliant on the browser redirection method, since iOS 9 would be

released mid-September. Despite the fact that browser redirection is no viable option

anymore, it is still included in the outcomes of this report by means of a fall-back option for

older iOS versions.

Safari View Controller is a miniature web browser window that is capable of being launched

from the application, but without leaving the application. It is more or less a hybrid between

Webview and Browser Redirect. It shares cookies and saved passwords with the default

browser on iOS (Safari). Passwords are saved locally and encrypted, with the option of

syncing them with other devices through the cloud.

This method will only be available in iOS 9 and above and although Apple iOS has relatively

good adoption rates9, this will be a problem for a widespread deployment in 2015 and 2016.

The flow will feel very responsive and easy: Safari View Controller is faster than Webview

and has the same look in all applications it is used in. Furthermore, the launched window has

a read-only address bar so users can verify whether the website is authentic.

Because the Safari View Controller is launched mostly for login purposes and can save

passwords, there are a lot of times when it is launched and closed immediately if the user

was already logged in. In this case it is possible to start the Safari View Controller as

hidden10. If the user was already logged in, then no prompt is shown.

5.2.3 Android – Chrome Customs Tabs
Chrome Custom Tabs are the Chrome implementation of the native-to-web content

transition. It is part of Google Chrome, a separate application which is not included on

Android smartphones by default. Other browsers and applications can decide to offer an

identical API and developers are free to choose any custom tabs running on the device.

The mechanism of discovering custom tabs applications is based on the Android intent

resolver. The application requests a list of all applications on the device that can handle the

URL and have the custom tabs API so the developer can differentiate the applications by

name and if available, select Chrome.

The content is loaded from a provided URL. It is not possible to create, read or alter the

content because the custom tabs are a complete black box to the application, the developer

can start Chrome custom tabs but cannot stop it. Once the custom tabs have been started,

the application has no control, it only receives callbacks with the GET URLs of the Chrome

navigation. Any active sessions or cookies are shared with the custom tabs mode and any

logins done in the custom tabs mode remain active in the Chrome browser. For an OAuth-

5 http://kickingbear.com/blog/archives/492
6 https://discussion.evernote.com/topic/27026-my-app-is-rejected-by-apple-for-popup-the-oauth-login-
page-in-safari-please-help/
7 http://sixcolors.com/link/2014/09/when-apple-forces-an-app-to-be-less-secure/
8 https://groups.google.com/forum/m/#!topic/oauth/xo9V5-qWBjY
9 Apple iOS 8 had an adoption rate of 90% in 12 months.
10 https://library.launchkit.io/how-ios-9-s-safari-view-controller-could-completely-change-your-app-s-
onboarding-experience-2bcf2305137f

http://kickingbear.com/blog/archives/492
https://discussion.evernote.com/topic/27026-my-app-is-rejected-by-apple-for-popup-the-oauth-login-page-in-safari-please-help/
https://discussion.evernote.com/topic/27026-my-app-is-rejected-by-apple-for-popup-the-oauth-login-page-in-safari-please-help/
http://sixcolors.com/link/2014/09/when-apple-forces-an-app-to-be-less-secure/
https://groups.google.com/forum/m/#!topic/oauth/xo9V5-qWBjY
https://library.launchkit.io/how-ios-9-s-safari-view-controller-could-completely-change-your-app-s-onboarding-experience-2bcf2305137f
https://library.launchkit.io/how-ios-9-s-safari-view-controller-could-completely-change-your-app-s-onboarding-experience-2bcf2305137f

Federated login to native applications using a web browser

11

flow this means there is no way to automatically return to the application once authentication

has been successful.

Normally when the OAuth URL is opened in a web browser, the application is paused and

sent to the background. However, when the URL is opened in custom tabs, Chrome prevents

the application from being evicted by the system. As long as the custom tab is on top of the

application, it raises its importance to the ‘foreground level’. This puts the application in a

special state, outside the regular foreground and background.

By setting the colour of the toolbar and the ‘back’-icon, the application developer can blend

Chrome’s custom tabs in the overall design and make transitions between native and web

content more seamless without having to resort to a WebView. The Chrome browser in the

custom tabs mode has a minimalist look, so no navigation bar, no address bar and no tabs.

Therefore, users won’t be able to verify if the website is authentic. Just like with browser

redirection, the URL-scheme can be copied. This causes the same potential security risks: if

another (malicious) application deliberately copies the scheme in order to be chosen by the

user, it can intercept the token.

5.3 Intercepting tokens
Most of the methods described above use URL-schemes in order to function. URL-schemes

make it possible to open applications from other applications. This can also be used to

perform specific actions, like pass through tokens from a browser to an application.

A disadvantage of using URL-schemes is that the registered URLs are not protected. This

means that any other application can register the same URL-scheme and potentially

intercept the OAuth-token. Most of the methods are susceptible, see the table at 5.4.

Hackers can exploit this by building an application with the same redirect scheme and getting

it installed on the user’s phone. If these conditions are met (if multiple applications on the

user’s device claim the same URL-scheme), the user will be presented a selector window,

where he can select between the applications which should handle the URL (in our case,

which one receives the token). A hacker can easily mimic the ‘real’ application by using the

same name and icon as well. If the user selects the malicious application, it still needs to

swap the authorization token for an access token. This can be done by using the client

secret, which can be reverse-engineered from the application.

On most operating systems (except iOS 9) there is no system to determine which application

is linked to the registered URL-scheme. One possible solution is that the application uses an

ID only known to itself and the server, with which the server can encode the token and the

application can use this encoded token. This also requires changes on the server. Even this

approach would not be 100% secure since this ID (even if you encrypt it) could be reverse-

engineered in native applications.

For iOS 9 though there is a way to securely redirect the user back to the application with

Universal Links11. The developer can place a .json-file which contains the unique AppID on

the root of their website. The associated domain where iOS can retrieve that json-file are

defined in the application’s .plist-file. The file has a unique ID that can never be used by

another application and a link which will open your application when the browser tries to

open it. For iOS 9 applications, this is the recommended way.

Even without additional measures, the hacker needs to invest a lot of time and effort to

intercept tokens. The URL-scheme and swapping of the authorization token for an access

11

https://developer.apple.com/library/ios/documentation/General/Conceptual/AppSearch/UniversalLinks.
html

https://developer.apple.com/library/ios/documentation/General/Conceptual/AppSearch/UniversalLinks.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/AppSearch/UniversalLinks.html

Federated login to native applications using a web browser

12

token needs to be figured out and an application has to be built. Moreover, the hacker has to

convince the user to install his malicious application (alongside the official application) and

click it when the choice is presented. The SDK’s do not provide additional counter measures

since the interception of tokens is a rather adverse side effect of using oauth2.

5.4 Overview methods
All the strong and weak points of different methods for authenticating through a web browser are included in the table below. The following definitions are

based on the criteria formulated in chapter 3.3, some of which have been merged. When a method does not score ‘Yes’, the reason is listed in the table. A

more elaborated explanation is given in chapter 5, Findings.

Security The method is secure and robust Yes Yes, but… No
User data The method doesn’t store user data (credentials, personal data etc.) Yes Locally encrypted Cloud/unencrypted
Address bar The user can verify the server address and SSL-certificate Yes No
User experience The method provides a good user experience and is user friendly Yes Average No
Specific browser The method works with all browsers Yes No, system browser No, third party browser
Widely used The method is available on a widely used version of the platform Yes Yes, but… No
Supported The method is supported by the operating system Yes Yes but… No

Method Security User data Address bar User experience Specific browser Widely used Supported

Windows x-ms-webview Insecure
URL-scheme

Insecure Shows no address bar Switch applications dialog

Windows browser redirect Token interception Can save credentials
in web browser

 Another application in flow +
protocol request dialog

Windows WebAuthenticationBroker Can save credentials
in cloud

Shows no address bar Save password dialog No Windows 7 support

Apple OS X WebView Token interception App has control over
inputted credentials

Shows no address bar

Apple OS X browser redirect Token interception Can save credentials
in web browser

 Another application in flow +
dialog

Apple iOS WebView Bad security reputation App has control over
inputted credentials

Shows no address bar

Apple iOS Safari browser login Token interception Can save credentials
in web browser

 Another application in flow +
dialog

System browser Apple rejects apps

Apple iOS Safari View Controller Token interception Can save credentials Save password dialog Only in iOS 9

Android WebView App has control over
inputted credentials

Shows no address bar

Android Chrome Custom Tabs Token interception Can save credentials
in browser

Shows no address bar No automatic return to app Third party browser Only devices with Chrome

Android browser redirect Token interception Can save credentials
in web browser

 Another application in flow

Table 1 - Overview methods

6 Conclusion

Summary
There are several methods for federated login to native applications. Each operating system

provides similar methods. For example, Webview and Browser Redirect are commonly used

methods on all the operating systems. In addition, Microsoft, Apple and Google provide

specialised methods such as Microsoft’s WebAuthenticationBroker class, Apple’s Safari View

Controller (iOS 9) and Google’s Chrome Custom Tabs for Android.

Webview has proven to be insecure and inadequate because of security issues and/or the

absence of an address bar. It is important that users can verify the authenticity and security

of the website they are visiting, this is not possible with the embedded Webview components

provided by Microsoft, Apple and Google.

Microsoft’s WebAuthenticationBroker class is also inadequate because it automatically saves

user credentials in the Microsoft Cloud and doesn’t show an address bar.

Google’s Chrome Custom Tabs is only available on Android smartphones with (a recent

version of) the Chrome web browser installed on it. This means that most users won’t be

able to use it. In addition, no address bar is shown to the user and there is no way to

automatically return to the application once authentication has been successful.

Apple’s Safari View Controller has similar features as Webview (the user doesn’t leave the

native application) but shares many things with the default browser (Safari) like saved

passwords However, unlike Webview, Safari Web Controller does show the address bar so

users can verify whether the website is secure. The main drawback of Safari View Controller

is that it is not backwards compatible with previous versions of iOS. It is expected though that

iOS 9 will have had substantial adoption among users by September 2016.

Browser redirection is available on all operating systems (except iOS 9) and proved to be the

best method. Because the default web browser is used, the user has full access to the

address bar and all of the browser functionality. Despite this there are also disadvantages.

The user flow is less smooth than Webview because the user must temporarily switch to

another application (the web browser). Instead of ‘application -> in-app webview ->

application’ the user is presented a more complicated ‘application -> system web browser ->

application’. Also, mostly on desktop platforms, the OS or the browser will ask the user if he

really wants to switch applications when the browser wants to return to the application using

a callback URL. Another disadvantage is that other (malicious) applications can register the

same URL-scheme inside the operating system. Those applications can then potentially

intercept the response token.

Federated login to native applications using a web browser

15

Conclusion
Because of the above, Browser redirect is the best method for Windows, Apple OS X and

Android. Unfortunately, Apple rejects iOS applications which use Browser redirect and

more’s the pity that Apple provides no secure alternative for earlier iOS versions. Around

September 2016 this will likely be no problem anymore since most of the iOS users will run

iOS 9 by then. Until then, there are a two possible scenarios (with options 2 and 3 being

insecure but pragmatic):

1) Only support Apple iOS 9 (iOS 8 or earlier users won’t be able to use the application).

2) Use Safari View Controller on iOS 9 with Browser redirect as fall-back on earlier

versions.

3) Make two versions of the application (iOS 9 will be secure; iOS 8 with Webview will

not be).

Based on the findings above, SURFnet and Egeniq have developed SDK’s and

documentation for the following methods:

 Microsoft Windows: Browser redirect (desktop and mobile)

 Apple OS X: Browser redirect

 Android: Browser redirect

 Apple iOS 9 Safari View Controller, with Browser redirect as fall-back

The code and documentation of the SDK’s are published on GitHub.

 https://github.com/SURFnet/nonweb-sso-android

 https://github.com/SURFnet/nonweb-sso-ios

 https://github.com/SURFnet/nonweb-sso-osx

 https://github.com/SURFnet/nonweb-sso-windows

https://github.com/SURFnet/nonweb-sso-android
https://github.com/SURFnet/nonweb-sso-ios
https://github.com/SURFnet/nonweb-sso-osx
https://github.com/SURFnet/nonweb-sso-windows

